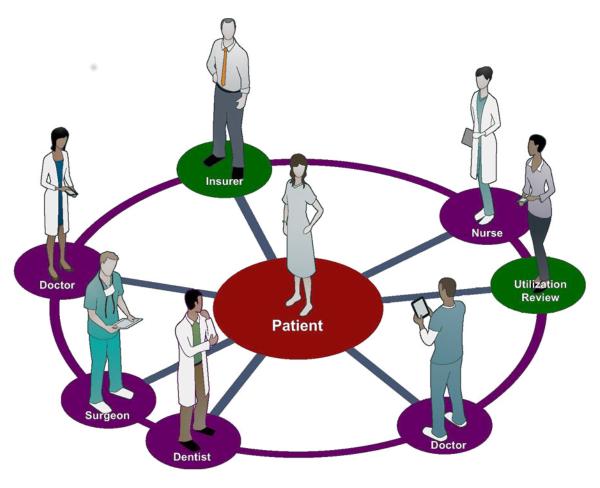


Combining Patient Centric Drug Product Design & Packaging Engineering for successful therapy management

Nélio Drumond, PharmD, PhD

10th Pharma Packaging and Labeling Innovation Forum
14th & 15th September 2023, Omni Parker House, Boston, MA


Disclaimer

The opinions expressed in this presentation are solely those of the presenter and not necessarily those of Takeda.

Takeda does not guarantee the accuracy or reliability of the information provided herein.

2

The Patient Centric model in healthcare provision

- Patients are actively *involved* from early phase drug product development.
- Design and supply of drug products that meets the specific needs of patients.
- Individual preferences, values, and beliefs are accountable for selecting and designing appropriate therapeutic choices.
- Direct interaction with professionals to navigate the decision-making process and tailor their healthcare provision.

Patient Centric model implementation in healthcare

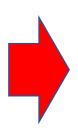
"You can't deliver tomorrow's innovation if you're still using yesterday's business models."

Patient-centric healthcare will accelerate while pharmaceutical companies deploy digital technology.

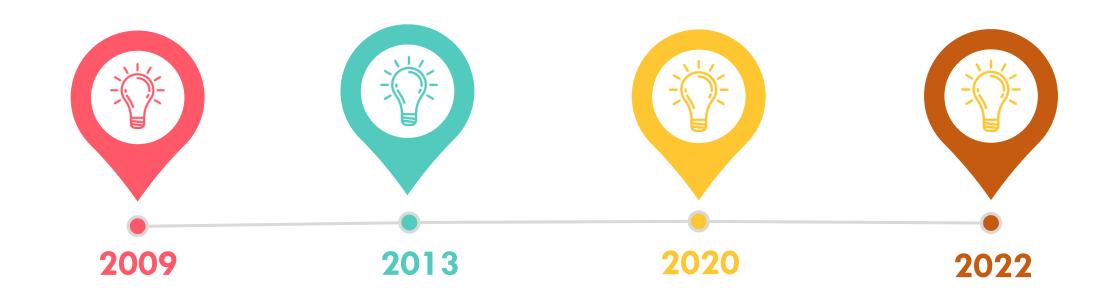
Consumer industry......

- End user is involved *very early* into the development process of a product.
- Consumer market research ("clinical trials")

Appropriateness


Use

Perception



1973 2021

Patient centric **regulatory** evolution

ICH Q8 (R2)

"...product should be designed to meet patients' needs..."

EMA guideline

"Development of pediatric medicines"

EMA guidance

"Development of geriatric medicines"

EMA/FDA

Patient voice/experience to support regulatory decision making process

Patient centric **regulatory** evolution

17 October 2022 EMA/354012/2020 European Medicines Agency

Patient experience data in EU medicines development and regulatory decision-making

Outcome of the workshop on 21st September 2022

Incorporating Patient's Voice in Product Development and Regulatory Decision Making

Patient-Focused Drug

Development: Collecting

Patient-Focused Drug

Development: Methods to

Patient-Focused Drug

Development: Selecting.

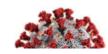
Patient-Focused Drug Development:

Incorporating Clinical Outcome

Assessments Into Endpoints For Regulatory Decision-Making

Guidance for Industry, Food and Drug Administration Staff, and Other Stakeholders Guidance 1 (Final), June 2020

Guidance 2 (Final), February 2022

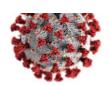

Guidance 3 (Draft), June 2022

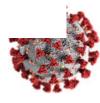
Guidance 4 (Draft), April 2023

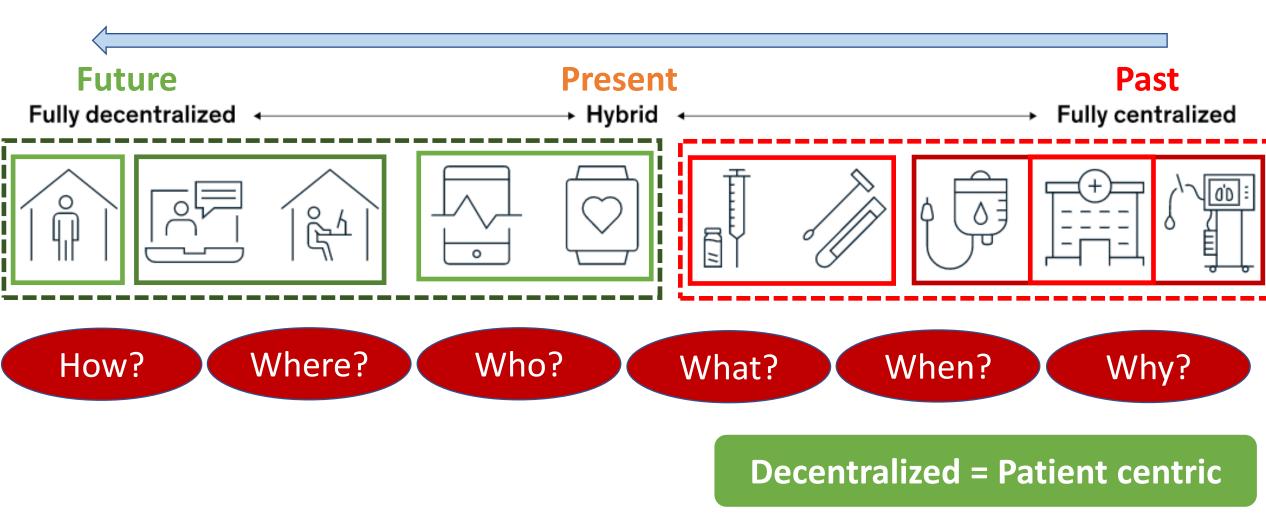
COVID-19 pandemic expedites digital transformation

FDA NEWS RELEASE

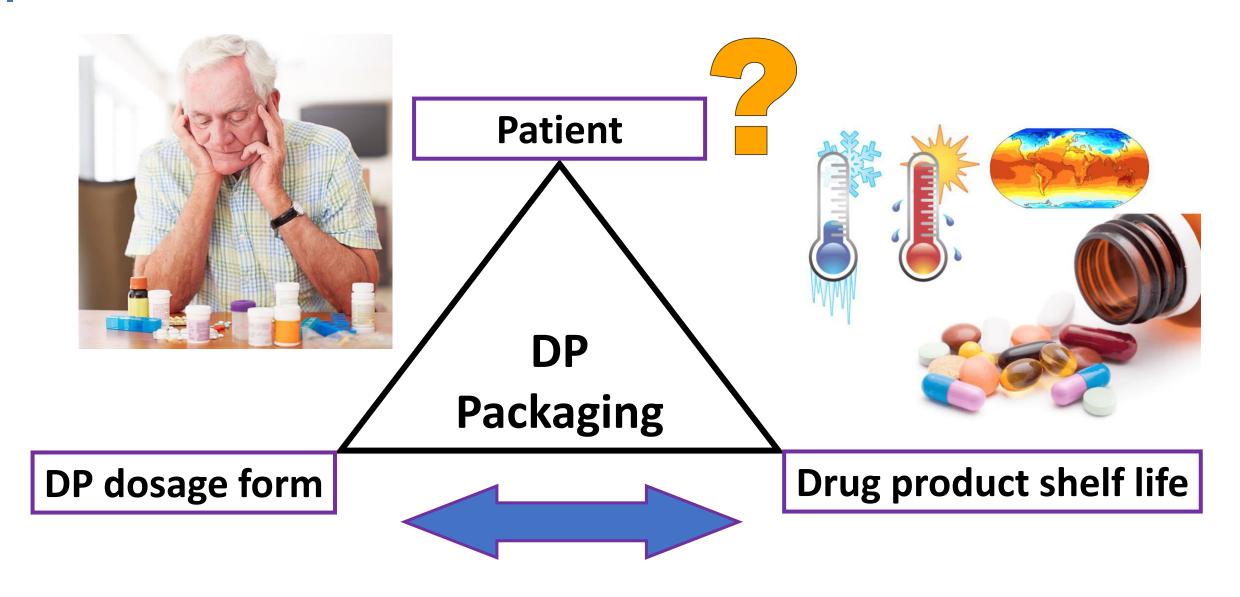
FDA Takes Additional Steps to Advance **Decentralized Clinical Trials**





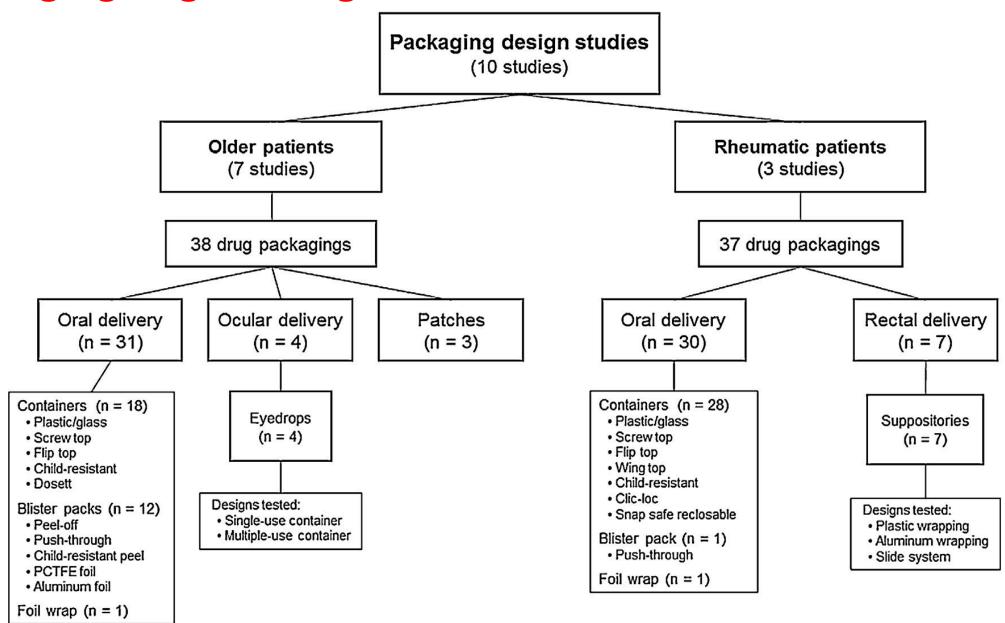


Patient **centric** product design = **Decentralized** clinical trials


"There's no place like home..."

Just a TV show or the simple reality?

Drug Product (DP) & Packaging Engineering



lisual Accuity

Poor packaging design can impact patient outcome

		•	
Objective 1- Estimate the prevalen	ce of difficulty associated with the packaging of work	-	ospital context within the previous 12 months of
	359 respondents indicate difficulty identifying in the past 12 months (21.1%)	Difficulty opening a medication 349 respondents indicate difficulty opening a medication within the past 12 months (20.5%)	
Reasons for difficulty	n (% of total respondents; % of those reporting this difficulty with this product category)	Reasons for difficulty	n (% of total respondents; % of respondents reporting this difficulty with this product category)
Lack of transparency made product identification difficult	47 (2.8; 13.1)	Too small of an area to grip	125 (7.3; 35.8)
Crowded label	189 (11.1; 52.6)	Material meant to separate stuck together	116 (6.8; 33.2)
Small text	238 (14.0; 66.3)	Product required too much force to open	119 (7.0; 34.1)
Similar packaging different products	246 (14.5; 68.5)	Product required two hands to open	172 (10.1; 49.3)
Confusing names	55 (3.2; 15.3)	Unfamiliar with product packaging	60 (3.5; 17.2)
Dark conditions	117 (6.9; 32.6)	Packaging directions for opening were not clear	45 (2.6; 12.9)
Objective 2-	Investigate the coping strategies employed wh	en difficulties occur with the	oackaging of medications
Coping strategies		Coping strategies	
Flashlight	211 (12.4; 58.8)	Knife	99 (5.8; 28.4)
Touch/feel	26 (1.5; 7.2)	Scissors	189 (11.1; 54.2)
Changed location of product within container, bag or ambulance	174 (10.2 48.5)	Teeth	103 (6.1; 29.5)
		Pen	76 (4.5; 21.8)
		Partner Assist	172 (10.1; 49.3)
Objective 3- Beg	gin to quantify the potential impacts on care ass	sociated with difficulties with	the packaging of medications
Difficulty resulted in negative patient outcome	20 (1.2; 5.6)	Difficulty resulted in negative patient outcome	32 (1.9; 9.2)

Packaging Engineering: clinical evidence?

Packaging Engineering: clinical evidence?

Table 4 Publications on packaging design included the review.

	Authors	Research focus	Conclusions
patients 1 B a 2 C 2 K V N 1	Atkin et al., 1994	Ability to handle standard medication packages	Packaging designs significantly impede access to medication
	Braun-Münker and Ecker, 2015	Influence of transparency and tablet/cavity size ratio on patients' handling two different blister materials	Limited movement and shifting space of the dosage form in the blister packaging was the most important factor for fast opening and patient satisfaction
	Dietlein et al., 2008	Ability to apply eyedrops from a single-use container versus standard container	Problems in self-administering eyedrops from single-use containers. Correlation to container size and training administration
	Keram and Williams, 1988	Quantitative comparison of the difficulty experienced when opening different medication container designs	Ability to open different types of child-resistant containers is variable (30% could not open). Large containers are preferred
	Mühlfeld et al., 2012	Relationship between blister pack designs and utilization problems	Opening force and opening mechanism can impact the usability of blister packs
	Nikolaus et al., 1996	To measure the prevalence of difficulty in opening and removing tablets from a range of common medicine containers	A high rate of failure in opening medication containers was seen. "Push and turn" bottles could not be opened by 2/3 of all tested subjects
	Parkkari et al., 2010	Handling of unit-dose pipettes in comparison to conventional eye drop bottles	Polyethylene unit-dose pipettes were at least as easy to handle as conventional eye drop bottles
Rheumatic patients	Le Gallez et al., 1984	Ability to handle different tablet containers	Flip off tops, tops with long threads requiring many turns, small and glass containers were unfavorable
	Lisberg et al., 1983	Ability to open a range of reclosable tablet containers and unit dose packs	Child-resistant containers, especially the "clic-loc" type, and smaller containers were less easy to open
	Verheggen- Laming et al., 1988	Difficulties involved in removing suppositories from the package	Patients have problems in opening suppository packages

Packaging Engineering: patient-centric considerations

Tablet containers

Packaging design

Negative patient outcomes

- 1. Opening mechanism:
 - Child-resistant
 - Clic-Loc®
 - Flip-off tops
 - Push-and-turn
 - Long threads / N° of turns
- 2. Smaller container sizes
- 3. Glass containers

Packaging design

Negative patient outcomes

Suppositories

1. Packaging type/material

Packaging design

Blister packs

Negative patient outcomes

- 1. Opening mechanism:
 - Peel-push
 - Force required
- 2. Smaller tablet/cavity ratios

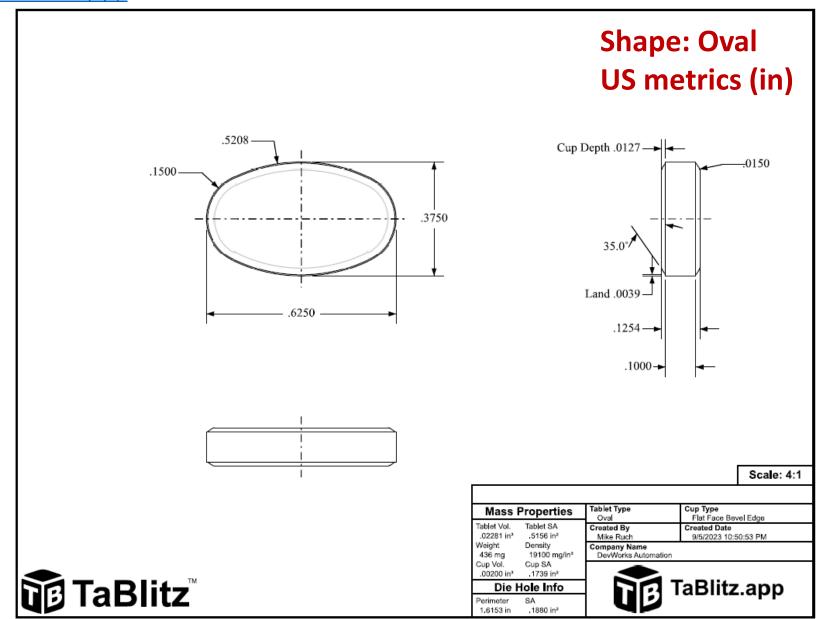
Negative patient outcomes

3. Poor transparency

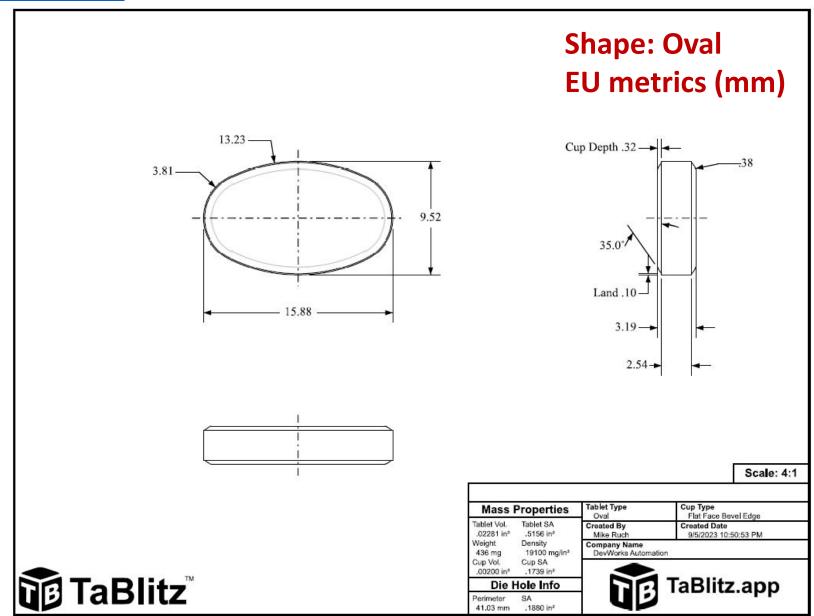
Packaging design

4 6: 1

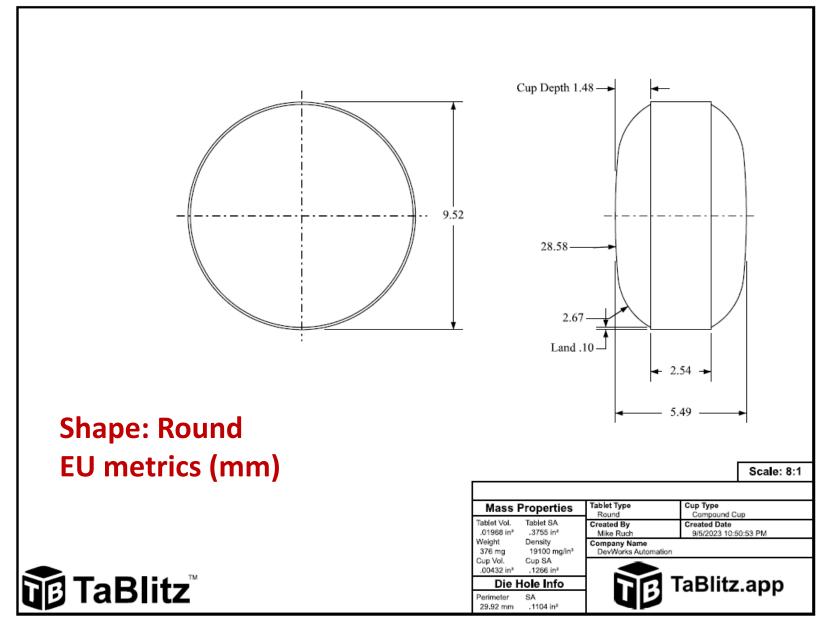
Eye drops


- 1. Single-use containers
- 2. Smaller container sizes
- 3. Polyethylene pipettes

TaBlitz – Real-time 3D tablet & packaging design


https://www.tablitz.app/

 TaBlitz produces an entire data packet including 2D tablet drawings which provide real-time information required for blister & bottle packaging design.


TaBlitz – Real-time **3D tablet** design & packaging

TaBlitz – Real-time **3D tablet** design & packaging

TaBlitz - Real-time 3D tablet design & packaging

TaBlitz - Real-time 3D tablet design & packaging

- TaBlitz produces an entire data packet including 2D tablet drawings which provides real-time information required for blister & bottle packaging design.
- Pharmaceutical companies are on the driver's seat and no longer rely on tooling manufacturers to provide tablet specs/drawings.
- Additional benefits of TaBlitz proprietary software:
 - ✓ Real-time 2D/3D rendering.
 - ✓ Intelligence-guided tablet design (can support strategic marketing).
 - ✓ Cross-functional design collaboration between functions/stakeholders.
 - ✓ Manufacturing-ready design specifications for tooling suppliers.

Questions?

Nélio Drumond, PharmD, PhD

Keynote Speaker on Patient-Centric Drug Product Design | Expert in Pharmaceutical Development, Clin...

nelio.drumond87@gmail.com www.linkedin.com/in/neliodrumond